COVID-19 Clinical Update
I-TECH Videoconference March 15, 2021

Matthew Golden, MD, MPH
Professor of Medicine, University of Washington
Director, PHSKC HIV/STD Program
Director, UW Center for AIDS and STD
Overview

• Epidemiology
• SARS-CoV-2 Variants
• Vaccines
• Treatment
Global Trends in COVID-19 Diagnoses & Deaths

- >116 Million Confirmed Cases
- 2.7 million cases/week
- >2.5 Million Confirmed Deaths
- 60,323 deaths/week

Figure 1. COVID-19 cases reported weekly by WHO Region, and global deaths, as of 7 March 2021**
Variant of Concerns

<table>
<thead>
<tr>
<th>Mutations</th>
<th>Epidemiology</th>
<th>Impacts</th>
</tr>
</thead>
</table>
| **UK – B.1.1.7** | N501Y (increases viral binding affinity for ACE), 69/70 deletion (viral escape), D614G | Described UK – 111 countries in all regions | ~56% More transmissible
- More severe
- ? Decreased Novavax & J&J efficacy |
| **South Africa - B.1.351** | N501Y, D614G, E484K, K417N/T, | Described South Africa – 52 countries in 4 WHO regions (none in South America) | - Higher viral load
- More transmissible
- Possible immune escape
- Decreased neutralization by sera from convalescent sera and sera from Moderna vaccine recipients (not seen with B.1.1.7)
- ? Decreased Novavax, J&J and AZ efficacy |
| **Brazil – P1** | N501Y, D614G, E484K, K417T, | Brazil – 32 countries (Americas, Europe, India) | - Reinfections
- Resurgent epidemic |
Impact of B.1.1.7 on Mortality

- **Background**: Impact of SARS-CoV-2 variants on mortality uncertain
- **Design**: Matched cohort study – matching on time and geography
- **Population**: Sample 109,812 persons age >30 testing SARS-CoV-2+ 10/1/20-1/29/21 in a testing center in UK
 - 50% sample S gene negative (B.1.1.7)
 - 42% of cases during period were B.1.1.17
- **Outcome**: Death within 28 days of positive test

Mortality 0.4% in B.1.1.7 and 0.3% in non-B.1.1.17
Absolute Risk of Death is Low
Variant of Concerns – 501Y Lineages

- 3 primary variants – B.1.1.7 (UK - V1), B.1.351 (South Africa, V2), P1 (Brazil, V3)
- Changes mostly affect spike protein – binds ACE
- Phenotypic effects
 - Increased binding affinity for ACE2 receptor (V1, V2, V3)
 - Increased transmissibility (V1 and V2)
 - Increased capacity to overcome prior infection and/or vaccine induced immunity (V2, V3)
 - Increased virulence (V1)

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Variants</th>
<th>Impact</th>
</tr>
</thead>
</table>
| Deletion 11288 & 11296 | V1, V2, V3 | • Affects nonstructural protein
• Decreases cellular response to type 1 interferon – autophagosome |
| 501Y | V1, V2, V3 | • Increase affinity spike protein for ACE2 receptor 3.5-fold |
| E484K | V2, V3, some V1 | • In presence of 501Y increases affinity for ACE2 receptor 12.7-fold (epistasis)
• Decreased neutralization by convalescent sera, vaccine elicited antibody, monoclonal antibody |
| S/417 | V2 (K417N), V3 (K417T) | • Reduce affinity for ACE2
• Increase spike expression – decreased antibody neutralization |
| L18F | Some V2, V3 | • Some decreased antibody neutralization |
Variant of Concerns – 501Y Lineages

Figure
- Size circles indicates statistical significance of tests for positive selection
- Redder means larger percent of isolates have mutations

Why the shift?
- Change in the global fitness landscape
 - Evasion of preexisting immunity hypothesis (doesn’t fit for V1)
- Chronic-illness emergence hypothesis
 - Mutations accumulate in immunocompromised persons with longer duration of infection – selection occurs within individuals
 - It took time to have enough people with infections lasting months to select for multiple mutations

Martin D. Medrxiv 2020
B.1.429
- Initially identified in June in California
- Mutations facilitate strong binding to ACE (L452R)
- Some evidence this is more transmissible and causes more severe disease
- May at least partially escape immune control

B.1.526
- Identified in New York – now 14-28% isolates
- E484K (South Africa & Brazil) + S477N (affecting binding ACE)
Vaccine Safety

- Vaccine safety data 12/140/20-1/13/21 – 13,794,904 vaccines administered
- Vaccine adverse event reporting system (VAERS) – Passive surveillance
 - 6,994 events – 91% nonserious (headache, fatigue, dizziness)
 - 640 serious - 113 deaths - 78 in long term care facilities
 - No suggestion that vaccine was a cause of death
 - 62 cases anaphylaxis (no deaths) – 4.5 cases per million doses
 - Higher than flu vaccine (1.4) and lower than shingles vaccine (9.6).
 - Food induced anaphylaxis in US = 50-160 per 1 million person years
- V-Safe – Active surveillance – 1,603,065

Gee J. MMWR 2021
Novavax Vaccine: Update from January

Vaccine: Protein-based vaccine – spike protein in nanoparticle

Design: Two placebo controlled, double blind RCTs

Administration: 2 doses

Storage: 2-8°C (refrigeration)

Population:
- UK study - >15,000 subjects – 106 events
- South Africa – 2665 subjects -147 events

Outcome: PCR confirmed COVID-19 >7 after 2nd dose – seronegative at baseline

Results

- **UK Study**
 - 96.4% effective again original strain
 - 86.3% effective against B.1.1.7 (UK variant)
 - 5 cases severe disease – 4 B.1.1.7 – all in placebo group

- **South Africa**
 - >90% of infections with B.1.135
 - 48.6% effective overall
 - **All 5 severe cases in placebo group**
 - Prior infection was partially protective in placebo group
 - 90 day illness – 7.9% seronegatives vs. 4.4% seropositives

Novavax press release March 11, 2021
Vaccines: Janssen Ad26.COV2.S

Vaccine: replication incompetent adenovirus vector S protein vaccine
Design: Two placebo controlled, double blind RCTs
Administration: 1 dose
Storage: 2-8ºC (refrigeration)
Population: 39,321 enrolled and eligible for analysis – 47% in US, 41% Latin Am, 13% South Africa – 35% >60 years
Outcome: PCR confirmed Moderate to Severe COVID-19 >14 & >28 after vaccine – seronegative at baseline

Results

<table>
<thead>
<tr>
<th></th>
<th>>14 Days</th>
<th></th>
<th></th>
<th>>28 Days</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vaccine</td>
<td>Placebo</td>
<td>Efficacy</td>
<td>Vaccine</td>
<td>Placebo</td>
<td>Efficacy</td>
</tr>
<tr>
<td>All</td>
<td>116</td>
<td>348</td>
<td>66.9%</td>
<td>66</td>
<td>193</td>
<td>66.1%</td>
</tr>
<tr>
<td>Severe</td>
<td>14</td>
<td>60</td>
<td>76.7%</td>
<td>5</td>
<td>34</td>
<td>85.4%</td>
</tr>
</tbody>
</table>

- Suggestion of efficacy against **asymptomatic infection** based on N-specific antibody (not spike) at day 71 – 74% after day 29 (small numbers)
- Some variation by site: US (72%), Brazil (68%) South Africa (64%) – 95% cases in South Africa were B.1.521 and 69% in Brazil were P.2.

Source: FDA briefing document 2021
Efficacy mRNA Vaccines Against Asymptomatic Infections

Background: Prevention impact of mRNA vaccines on asymptomatic infection – not just disease – uncertain.

- 80% ↓ PCR+ asymptomatic infection 28 days after 1st dose

Design: Retrospective cohort study
39,156 adults undergoing pre-procedure asymptomatic SARS-CoV-2 PCR testing at Mayo Clinic System 12/17/20-2/8/21

Exposure: ≥1 dose mRNA vaccine (94% Pfizer)

Outcome: Relative risk PCR+ asymptomatic infection
- Adjusted – age, race, place residence, local vs. referred

Results

<table>
<thead>
<tr>
<th></th>
<th>Percent Positive</th>
<th>Unadjusted RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unvaccinated</td>
<td>3.1%</td>
<td>Ref</td>
</tr>
<tr>
<td>1 dose prior to screening</td>
<td>1.6%</td>
<td>0.49 (0.36-0.69)</td>
</tr>
<tr>
<td>2 doses prior to screening*</td>
<td>0.9%</td>
<td>0.27 (0.12-0.60)</td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>3.1%</td>
<td>Ref</td>
</tr>
<tr>
<td>Screening 0-10 days after 1st dose</td>
<td>2.6%</td>
<td>0.81 (0.54-1.2)</td>
</tr>
<tr>
<td>Screening >10 days after 1st dose</td>
<td>0.9%</td>
<td>0.28 (0.16-0.49)</td>
</tr>
<tr>
<td>Screening >0 days after 2nd dose*</td>
<td>0.9%</td>
<td>0.27 (0.12-0.60)</td>
</tr>
</tbody>
</table>

Adjust RR >10 days after 1st dose 0.21 (0.12-0.37) and >0 days after 2nd dose 0.20 (0.09-0.44)

*36% of tests done <7 days following 2nd dose
Israel has achieved very high levels of immunization
Feb 6 – 45% and 30% of population had received 1st and 2nd doses of Pfizer vaccine (90% and 80% persons >6 years)
Nationalized healthcare with good data system
Observational analysis of trends
 Age – older people vaccinated 1st
 Lockdown effect?
 Early vs. late vaccine areas
Impact COVID-19 Vaccination on Social Distancing: CDC Guidelines

What’s stayed the same - Everyone
- Public mask wearing and social distancing – 6 feet apart, avoid crowds and poorly ventilated spaces
- Delay travel when possible

What’s new – People >2 weeks after final dose of vaccine
- OK gather indoors with fully vaccinated people without wearing a mask.
- OK gather indoors with unvaccinated people from one other household (for example, visiting with relatives who all live together) without masks, unless any of those people or anyone they live with has an increased risk for severe illness from COVID-19.
- Exposure COVID-19
 - No routine quarantine of asymptomatic persons outside of group settings (e.g. jails, group homes)
 - Symptom monitoring – quarantine if symptomatic

Anti IL-6 Monoclonal Ab: Tocilizumab

- **Background**: Small RCTs suggest that mAb against IL-6 receptor may confer a mortality benefit. In January (last I-TECH review on IL-6 mAb) were not yet integrated into guidelines.
- **Design**: Open-label RCT – adaptive trial
- **Population**: 4116 patients hospitalized in UK with hypoxia and elevated CRP
- **Intervention**: Tocilizumab 400-800mg IV (+/- 2nd dose)
- **Outcome**: 28 day mortality

Source: Recovery Collaborative Group. Medrxiv 2021
Figure 4: Tocilizumab vs usual care in patients hospitalised with COVID – Meta-analysis of mortality in RECOVERY and other trials

<table>
<thead>
<tr>
<th></th>
<th>Deaths / Patients randomised (%)</th>
<th>Observed-Expected (O−E)*</th>
<th>Ratio of death rates, RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tocilizumab</td>
<td>Usual care</td>
<td></td>
</tr>
<tr>
<td>COR–IMUNO TOCI</td>
<td>7/64 (10.9)</td>
<td>8/67 (11.9)</td>
<td>0.3</td>
</tr>
<tr>
<td>RCT–TCZ–COVID-19</td>
<td>2/60 (3.3)</td>
<td>1/66 (1.5)</td>
<td>0.6</td>
</tr>
<tr>
<td>BACC Bay</td>
<td>9/161 (5.6)</td>
<td>(3/82) x2† (3.7)</td>
<td>1.0</td>
</tr>
<tr>
<td>COVACTA</td>
<td>58/294 (19.7)</td>
<td>(28/144) x2† (19.4)</td>
<td>0.3</td>
</tr>
<tr>
<td>EMPACTA</td>
<td>26/249 (10.4)</td>
<td>(11/128) x2† (8.6)</td>
<td>1.6</td>
</tr>
<tr>
<td>REMAP–CAP</td>
<td>98/353 (27.8)</td>
<td>142/402 (35.3)</td>
<td>−14.2</td>
</tr>
<tr>
<td>TOCIBRAS</td>
<td>14/65 (21.5)</td>
<td>6/64 (9.4)</td>
<td>3.9</td>
</tr>
<tr>
<td>Subtotal: 7 trials</td>
<td>214/1246 (17.2)</td>
<td>241/1307 (18.4)</td>
<td>−7.2</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>596/2022 (29.5)</td>
<td>694/2094 (33.1)</td>
<td>−48.2</td>
</tr>
<tr>
<td>All trials</td>
<td>810/3328 (24.8)</td>
<td>935/3401 (27.5)</td>
<td>−55.4</td>
</tr>
</tbody>
</table>

Heterogeneity between RECOVERY and previous trials: χ²=0.2

Source: Recovery Collaborative Group. Medrxiv 2021
• Use of tocilizumab (single intravenous dose of 8 mg/kg of actual body weight, up to 800 mg) in combination with dexamethasone (6 mg daily for up to 10 days) in hospitalized patients exhibiting rapid respiratory decompensation due to COVID-19. These patients are:
 • Recently hospitalized patients admitted to an ICU within 24 hours who require invasive mechanical ventilation, noninvasive mechanical ventilation (NIV) or high-flow nasal canula (HFNC) oxygen (>0.4 FiO₂/30 L/min of oxygen flow) (BIIa); or
 • Recently hospitalized patients (not in an ICU) with rapidly increasing oxygen needs who require NIV or HFNC and have significantly increased markers of inflammation (BIIa).
• In hospitalized patients with hypoxemia who require conventional oxygen therapy, the Panel recommends using one of the following options: remdesivir (BIIa), dexamethasone plus remdesivir (BIII), or dexamethasone alone (BI)
 • There is insufficient evidence to specify which of these patients would benefit from the addition of tocilizumab. Some Panel members would also give tocilizumab to patients who are exhibiting rapidly increasing oxygen needs while on dexamethasone and have a CRP ≥75 mg/L, but who do not yet require NIV or HFNC, as described above.

https://www.covid19treatmentguidelines.nih.gov/whats-new/
Ivermectin for COVID-19

- **Background**: Ivermectin has in vitro activity against SARS-CoV-2 and is widely used to treat COVID-19. Clinical trials have generally been small, and data demonstrating its efficacy is lacking.

- **Design**: Double blind placebo controlled RCT

- **Population**: 476 patients with mild COVID-19 diagnosed in prior 7 days in Colombia (median 5 days)

- **Intervention**: Ivermectin 300ug/kg qd x 5 days

- **Outcome**: Time to resolution of symptoms within 21 days

Source: Lopez-Medina E. JAMA 2021
There are insufficient data for the COVID-19 Treatment Guidelines Panel (the Panel) to recommend either for or against the use of ivermectin for the treatment of COVID-19. Results from adequately powered, well-designed, and well-conducted clinical trials are needed to provide more specific, evidence-based guidance on the role of ivermectin in the treatment of COVID-19.
Convalescent Plasma; RECOVERY Trial

- **Background**: Convalescent plasma has been widely used to treat COVID-19. One observational study suggested benefit, but small RCTs have not. NIH guidelines do not recommend its use.
- **Design**: Open-label RCT – adaptive trial of multiple interventions
- **Population**: 11,558 patients hospitalized in UK
- **Intervention**: High titer convalescent plasma – most 2 units
- **Outcome**: 28 day mortality – post-hoc analysis looking at before 12/20 to assess if B.1.1.9 might affect outcome

Source: RECOVERY Collaborative Group Medrxiv 2021

- No benefit in any subgroup analysis
- Mortality higher in antibody negative persons (34% vs. 19%, but no different in intervention effect.)
Convalescent Plasma; RECOVERY Trial

Source: RECOVERY Collaborative Group Medrxiv 2021

Figure 4: Convalescent plasma vs usual care in patients hospitalised with COVID – Meta-analysis of mortality in RECOVERY and other trials

<table>
<thead>
<tr>
<th>Deaths / Patients randomised (%)</th>
<th>Observed–Expected (O–E)* Var(O–E)</th>
<th>Ratio of death rates, RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Convalescent plasma</td>
<td>Usual care</td>
</tr>
<tr>
<td>AlQahtani</td>
<td>1/20 (5.0)</td>
<td>2/20 (10.0)</td>
</tr>
<tr>
<td>Bajpai</td>
<td>3/14 (21.4)</td>
<td>1/15 (6.7)</td>
</tr>
<tr>
<td>Avendano–Sola</td>
<td>0/38 (0.0)</td>
<td>4/43 (9.3)</td>
</tr>
<tr>
<td>Balseils</td>
<td>5/28 (17.9)</td>
<td>2/30 (6.7)</td>
</tr>
<tr>
<td>Qarhi/haran</td>
<td>6/43 (14.0)</td>
<td>11/43 (25.6)</td>
</tr>
<tr>
<td>Li</td>
<td>8/51 (15.7)</td>
<td>12/60 (20.0)</td>
</tr>
<tr>
<td>Ray</td>
<td>10/40 (25.0)</td>
<td>14/40 (35.0)</td>
</tr>
<tr>
<td>Simonovich</td>
<td>25/228 (11.0)</td>
<td>(12/105) x2† (11.4)</td>
</tr>
<tr>
<td>Agarwal</td>
<td>34/235 (14.5)</td>
<td>31/229 (13.5)</td>
</tr>
<tr>
<td>Subtotal: 9 trials</td>
<td>92/697 (13.2)</td>
<td>101/680 (14.9)</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>1398/5795 (24.1)</td>
<td>1408/5763 (24.4)</td>
</tr>
<tr>
<td>All trials</td>
<td>1490/6492 (23.0)</td>
<td>1509/6443 (23.4)</td>
</tr>
</tbody>
</table>

Heterogeneity between RECOVERY and previous trials: $\chi^2 = 0.8$

* Log-rank O–E for RECOVERY, O–E from 2x2 tables for the other trials. RR is calculated by taking In RR to be (O–E)2 with Normal variance 1/V. Subtotals or totals of (O–E) and of χ^2 yield inverse-variance-weighted averages of the ln RR values.

† For balance, controls in the 2:1 study by Simonovich count twice in the control totals and subtotals.