

COVID-19 Clinical Update I-TECH Videoconference September 14, 2020

Matthew Golden, MD, MPH
Professor of Medicine, University of Washington
Director, PHSKC HIV/STD Program
Director, UW Center for AIDS and STD

Overview

- Epidemiology & virology
- Laboratory testing
- Natural history reinfection
- Treatment & vaccines
 - 3313 clinical trials as of September 14!

Impact of Social Distancing

- Population: 1030 Maryland residents enrolled in a data platform (Dynata)
- Survey about adoption of nonpharmaceutical protective interventions (NPIs)
- 55 (5.35) self reported having been diagnosed with SARS-CoV-2

aOR SARS-CoV-2
Ref 0.26 (0.08-0.9) 0.32 (0.10-0.99)
Ref 0.34 (0.10-1.19) 0.10 (0.03-0.33)
Ref 6 (2.1-16.9) 3.8 (1.118-12.3) 4.29 (1.12-16.5)
Ref 1.41 (0.38-5.31) 16 (5.97042.7)

Risks for COVID-19 Death in South Africa

- Population: 3,460,932 patients attending public clinics in Western Cape, SA (16%HIV+), 22,308 with COVID-19
- Design: Population-based cohort study to assess factors associated with mortality in people with COVID-19, focusing on association with HIV

- HIV & TB are risks for COVID-19 associated mortality
- Conventional risk factors are still dominant
 - Uncontrolled diabetes more common among those who died than HIV

Boulle A. CID 2020

SARS-CoV-2 Virology: G614 vs. D614 Variants Role in Transmissibility

G614 had lower RT PCR Cts – ↑ viral load

Korber B. Cell 2020

SARS-CoV-2 Virology: Delta 382 Variant Role in Severity

- Population: 131 hospitalized patients in Singapore 1/20-3/20 enrolled in a prospective study
- Design: retrospective analysis comparing association of viral variants in ORF8 with hypoxemia
- Results:
 - 70% wild type, 22% 382-nucleotide deletion, 8% Mixed infection
 - Δ382 less severe
 - Similar quantities of virus No difference in replication capacity

	Hypoxemia	aOR (95% CI)
Wild type (n=92)	26 (28%)	1 (ref)
Mixed (n=10)	3 (30%)	1.78 (0.22-11.02)
Δ382 (n=29)	0 (0%)	.07 (0.00-0.48)

Young BE Lancet 2020

- ORF8 could be a target for drug development
- Uncertain if ORF8 mutants are more or less transmissible and impact on longer-term viral evolution

SARS-CoV-2 in Salvia vs. Nasopharyngeal Swabs

- Population: 70 in-patients with COVID-19 at Yale hospital
- Design: Comparison of saliva and nasopharyngeal swab specimens
- Results:
 - Larger proportion of saliva specimens positive up to 10 days
 - Quantity of SARS-CoV-2 higher in saliva than NP specimens
 - 495 healthcare workers tested 13 SARS-CoV-2 + in saliva
 - 9 tested by NP and 7 were negative
 - All had subsequent positive NP tests

SARS-CoV-2 in Salvia vs. Nasopharyngeal Swabs

- Desigr "enhar NP sw
- Result
 - High

 - Mea

- Two studies both support the use of salvia for PCR diagnostics
 - Saves PPE
 - Simplifies procedures
 - More acceptable to patients
 - Contradictory data on quantity of virus uncertain how much that matters

swabs, suggestive of more RNA

NP Swab

Antibody Response

- Population-based study Iceland
- Among 1215 recovered cases, 25 days after diagnoses, 91-95% of people had antibodies based on 2 pan-IgG tests
- Estimated 26.6% of household exposed and 5% of nonexposed with SARS-CoV-2 positive (PCR or Ab positive)
 - 2.3% of quarantined persons with negative PCR developed antibody
- 0.6% of PCR+ cases and 0.3% of infected persons died (based on 10 deaths)

Gudbjartsson DF NEJM 2020

Antibody Response

 Population: 37 symptomatic and 37 asymptomatic persons with postivei SARS-CoV-2 PCR tests in Wuhan, China

- Comp
 Controversy about if and how to use antibody tests persists
- 8 wee
 Probably lots of variable of tests
 hospit patien
 tests (not lab) or laC(lab)

patien tests (not IgM or IgG/IgM)

gG+

qG-

scent phase

SARS-CoV-2 Reinfection

- Patient experiences symptomatic COVID-19 in March, then tests positive on a screening test in an airport in Hong Kong 142 after the first positive test.
- CRP elevated at second test, IgG negative at time of second positive test, but positive 5 days later
- Whole genome sequencing demonstrate that the infecting viruses were from different clades/lineages
 - 1st US/UK lineage March/April
 - 2nd Switzerland/UK July/August

SARS-CoV-2 Reinfection #2

- 2nd Case in U.S.
- Sequences supposedly different

Case History

- March 25: Onset of sore throat, cough, headache, nausea, diarrhea.
- April 18: Tested positive for SARS-CoV-2 by PCR.
- April 27: Symptoms resolved.
- May 9 and 26: Tested negative for virus by two methods.
- May 28: Onset of fevers, headache, dizziness, cough, nausea, and diarrhea. Chest x-ray negative.
- June 5: Symptoms worsened -> hypoxia, new infiltrates on CXR admitted RT-PCR positive for SARS-CoV-2.
- June 6: SARS-CoV-2 IgM and IgG antibody positive.

SARS-CoV-2 Reinfection #3

Case History

- Case in Belgium
- Sequences different 11point mutations

- March: 51 y/o woman develops mild COVID-19 HA, fever, myalgia, coughing, HA Positive NP swab
- June HA, cough, fatigue, rhinitis 2nd positive NP swab

- Reinfections happen
- Sometimes these reinfections can be more clinically severe
- Retesting people make sense in at least some patients particularly if we can save sequences – hard to interpret
- No immunity passport!

Corticosteroids

- Background: Recovery trial demonstrated the methylprednisolone decreased mortality in patients with COVID-19 on supplemental 02 or mechanical ventilation
- Meta-analysis of 7 trials among critically ill patients
- 30% reduction in mortality

Sources: WHO Rapid Evidence Appraisal for COVID-19

Therapies WG. JAMA 2020

Convalescent Plasma: Observational Data

- Background Small Chinese RCT did not show CP was effective (underenrolled)
- Design Analysis data open label expanded access program
- Population 35,322 US patients 4/4-7/4/20
 - 52% in ICU
 - 8.7% 7 day mortality
- Outcome: 7 and 30-day mortality, outcomes stratified by timing of administration & quantity of SARS-CoV-2 IgG in plasma (subset receiving 1 unit)

Suggests that Convalescent Plasma is beneficial if given early and has a high titer of IgG – Not an RCT

Source: Joyner MJ. MedRxiv 2020

Convalescent Plasma: PLACID Trial

- Design Open label RCT
- Population 464 hypoxemic hospitalized patients in India with confirmed COVID-19
 - 68% of patients received hydroxychloroquine
 - ~50% received methylpred
 - ~65% eeceived AZM
- Intervention 2 doses of convalescent vs. standard of care – only 24 patients received CP within 3 days of symptom onset
- Outcome: composite of progression or death at 28 days
 Source: Agarway A. MedRxiv 2020

	Standard of Care N=229	CP N=235	CP (with detectable neutralizing antibody [NAbs])	CP (NAbs <u>></u> 1:80)	CP (NAbs undetectabl e)
All cause Mortality	13.5%	14.5%	13.8%	14.9%	18.7%
Profession to severe disease	7.4%	7.2%	6.8%	8.9%	9.4%
Composite outcome	17.9%	18.7%	16.9%	17.9%	20.3%

- CP arm had significantly greater resolution of SOB and fatigue at day 7, greater improvement in Fi02 and faster conversation to negative SARS-CoV-2 PCR
- Among 24 pts receiving CP within 3 days of symptom onset aOR: 0.59 (95% CI: 0.28, 1.24)]

Convalescent Plasma did not improve clinical outcomes in people with moderate COVID-19 – Lots we don't know

Remdesivir

Discharged

Hospitalized, not requiring supplemental

per-protocol remdesivir administration)

Hospitalized, not requiring supplemental

oxygen or ongoing medical care (other than

- Background
 - Small Chinese study no benefit
 - ACTT-1 Remdesivir decreased time to recovery by 4 days in hypoxemic patients with COVID-19 with a non-significant trend toward ↓ mortality -> FDA approval for severe disease
- Design Open label RCT
- Population COVID-19 pneumonia with 02 sat >94% (no supplemental 02)
- Intervention: SOC, 5-days or 10 days of remdesivir
- Outcome: Hospital discharge by day 14, 7-point ordinal scale at day 11 (higher score is better)

Hospitalized, requiring low-flow

Hospitalized, requiring noninvasive

Hospitalized, requiring invasive mechanical

ventilation or high-flow oxygen

supplemental oxygen

ventilation or ECMO

Remdesivir

- Trial "... suggests modest clinical benefit for a 5 day course compared to standard of care"
- Major questions
 - Who should get Remdesivir
 - Current practice at UW is to limit use to patients with a 02 sat <94%
 - Still some uncertainty about optimal duration
 - 5 days is best supported
 - Effect on discrete outcomes is not clear ordinal scale as an outcome is hard to interpret
 - Duration of hospitalization, mechanical ventilation, and death are different
 - Role of drug in persons receiving dexamethasone is not clear
 - Dexamethasone is much less expensive and more widely available

Are Nonsteroidal Anti-Inflammatories Safe in COVID-19?

- Previously studies have raised concern that NSAIDS may be unsafe in COVID-19
- Design Population-based cohort study using Danish health – NSAID users matched to 4 non-users based on propensity scoring
- Population 9236 Danes with a positive SARS-CoV-2 test
- Exposure Filled NSAID in 30 days prior to SARS-CoV-2 test
- Outcome: Mortality, hospitalization, ICU, mechanical ventilation

Outcome	NSAID users		Non-users		Comparison			
	Number of events/ sample size	Risk (%) (95% CI)	Number of events/ sample size	Risk (%) (95% CI)	Risk difference (%) (95% CI)	p- Value	Risk ratio (95% CI)	p- Value
Matched cohort								
Death	14/224	6.3 (3.1, 9.4)	55/896	6.1 (4.4, 7.8)	0.1 (-3.5, 3.7)	0.95	1.02 (0.57, 1.82)	0.95
Hospitalization*	50/204	24.5 (18.6, 30.4)	175/826	21.2 (18.1, 24.3)	3.3 (-3.4, 10.0)	0.33	1.16 (0.87, 1.53)	0.31
ICU admission*	11/223	4.9 (2.1, 7.8)	42/889	4.7 (3.2, 6.2)	0.2 (-3.0, 3.4)	0.90	1.04 (0.54, 2.02)	0.90
Mechanical ventilation*	10/224	4.5 (1.8, 7.2)	35/891	3.9 (2.5, 5.3)	0.5 (-2.5, 3.6)	0.73	1.14 (0.56, 2.30)	0.72
Renal replacement therapy*	n < 5/224	_**	_**	**	-0.2 (-2.0, 1.6)	0.81	0.86 (0.24, 3.09)	0.81

Use of NSAIDs was not associated with 30-day mortality, hospitalization, ICU admission, mechanical ventilation, or renal replacement therapy.

Source: Lund LC PLOS Medicine 2020

Are ACE Inhibitors (ACEi) & ARBs Safe in COVID-19?

- SARS-CoV-2 enters cells via binding to ACE2. Animal studies suggest that ACE inhibitors & ARBs may increase ACE2 expression, potentially increasing COVID-19 risk.
- Design Systemic review of studies investigating the association of ACEi and ARB use and COVID-19 disease, severity and mortality
- 27 studies included

Evidence does not suggest an association of ACEi or ARB use with SARS-CoV-2 infection or COVID-19 severity or mortality

Source: Caldeira D. IJC Heart & Vasculature 2020

Operation Warp Speed (OWS)

- US government initiative to develop a COVID-19 vaccine by the end of 2020 and have 300 million doses available and deployed by mid-2021
- 4 vaccine candidate selection criteria
 - Robust pre-clinical or early stage data on safety & potential efficacy
 - Potential to enter phase 3 trials by July-Nov 2020 efficacy outcomes 1st half 2021
 - Platforms allow fast and effective manufacturing capacity to produce >100 million doses by mid-2021
 - Use of one of 4 vaccine platforms thought most likely to be safe and effective – 6 of 8 planned partnerships announced

Operation Warp Speed (OWS)

Technology	Vaccine	Status
mRNA	Moderna	Immunogenic in phase I – phase 3 ongoing
	Pfizer/BioNTech	Immunogenic in phase I – phase 3 ongoing
Replication defective live vector	ChAdOx – AstraZeneca & Oxford*	Ongoing phase 3 in UK, Brazil and South Africa Phase 3 US trial started in August
	Janssen Ad26	Effective nonhuman primates, ongoing phase 1 with planned phase 3 in September
Recombinent subunit adjuvant protein	Novavax	Phase 1 done – phase 3 start in September
	Sanofi/GSK	Preclinical – phase 1 in Sept
Attenuated replicating live vector	Not yet chosen	

- Study on hold due to episode of transverse myelitis in a vaccinated study subject
- Development of manufacturing capacity ongoing in parallel with trials
- WHO website shows 9 vaccines in phase III trials (https://www-who-int.offcampus.lib.washington.edu/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines)

Questions and Discussion